Limits Continuity And Differentiability Question 62

Question: What is the value of k for which the following function f(x) is continuous for all x? $ f(x)={ \begin{aligned} & \frac{x^{3}-3x+2}{{{(x-1)}^{2}}},forx\ne 1 \\ & k,forx=1 \\ \end{aligned} }. $

Options:

A) 3

B) 2

C) 1

D) -1

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ f(x)= \begin{matrix} \frac{x^{3}-3x+2}{{{(x-1)}^{2}}}, & \forall x\ne 1 \\ k, & \forall x=1 \\ \end{matrix} . $ and $ f(x) $ is continuous.
$ \therefore \underset{x\to 1}{\mathop{\lim }},f(x)=k $

$ \Rightarrow \underset{x\to 1}{\mathop{\lim }},\frac{x^{3}-3x+2}{{{(x-1)}^{2}}}=k $

$ \Rightarrow k=\underset{x\to 1}{\mathop{\lim }},\frac{3x^{2}-3}{2(x-1)}[ByL’Hospitalsrule] $

$ \Rightarrow k=\underset{x\to 1}{\mathop{\lim }},\frac{6x}{2}[ByL’Hospitalsrule] $

$ \Rightarrow k=3 $