Limits Continuity And Differentiability Question 64

Question: If $ f(x)=\frac{x^{2}-bx+25}{x^{2}-7x+10} $ for $ x\ne 5 $ is continuous at x=5, then the value of $ f(5) $ is

Options:

A) 0

B) 5

C) 10

D) 25

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=\frac{x^{2}-bx+25}{x^{2}-7x+10},x\ne 5 $

$ f(x) $ is continuous at x=5 only if $ \underset{x\to 5}{\mathop{\lim }}\frac{x^{2}-bx+25}{x^{2}-7x+10} $ is finite.

Now, $ x^{2}-7x+10\to 0 $ when $ x\to 5 $

Then we must have $ x^{2}-bx+25\to 0 $ for which b=10.

Hence, $ \underset{x\to 5}{\mathop{\lim }}\frac{x^{2}-10x+25}{x^{2}-7x+10}=\underset{x\to 5}{\mathop{\lim }}\frac{x-5}{x-2}=0. $