Limits Continuity And Differentiability Question 64

Question: If $ f(x)=\frac{x^{2}-bx+25}{x^{2}-7x+10} $ for $ x\ne 5 $ is continuous at x=5, then the value of $ f(5) $ is

Options:

A) 0

B) 5

C) 10

D) 25

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=\frac{x^{2}-bx+25}{x^{2}-7x+10},x\ne 5 $

$ f(x) $ is continuous at x=5 only if $ \underset{x\to 5}{\mathop{\lim }}\frac{x^{2}-bx+25}{x^{2}-7x+10} $ exists and is finite.

Now, $ x^{2}-7x+10\to 0 $ when $ x\to 5 $

Then we must have $ x^{2}-bx+25\to 0 $ for which b=10.

Hence, $ \underset{x\to 5}{\mathop{\lim }}\frac{x^{2}-10x+25}{x^{2}-7x+10}=\underset{x\to 5}{\mathop{\lim }}\frac{x-5}{x-2} $ does not exist.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें