Limits Continuity And Differentiability Question 65

Question: Let $ 3f(x)-2f(1/x)=x, $ then $ f’(2) $ is equal to

Options:

A) $ \frac{2}{7} $

B) $ \frac{1}{2} $

C) $ 2 $

D) $ \frac{7}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ 3f(x)-2f( \frac{1}{x} )=x…(1) $

Put $ x=\frac{1}{x}, $

then $ 3f( \frac{1}{x} )-2f(x)=\frac{1}{x}…(2) $

Solving (1) and (2), we get $ 5f(x)=3x+\frac{2}{x}\Rightarrow f’(x)=\frac{3}{5}-\frac{2}{5x^{2}} $

$ \therefore f’(2)=\frac{3}{5}-\frac{2}{20}=\frac{1}{2} $