Limits Continuity And Differentiability Question 74

Question: Which of the following function is not differentiable at x=1?

Options:

A) $ f(x)=(x^{2}-1)| (x-1)(x-2) | $

B) $ f(x)=sin(| x-1 |)-| x-1 | $

C) $ f(x)=\tan (| x-1 |)-| x-1 | $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=(x^{2}-1)| (x-1)(x-2) | $

$ =(x^{2}-1)| (x-1)(x-2) | $

$ =(x+1)[(x-1)| x-1 |]| x-2 | $

Which is differentiable at x=1. For $ f(x)=sin(| x-1 |)-| x-1 |, $

$ f’({1^{+}})=\underset{h\to 0}{\mathop{\lim }}\frac{\sin h-h-0}{h}=0 $

$ f’({1^{-}})=\underset{h\to 0}{\mathop{\lim }}\frac{\sin h| -h |-| -h |}{-h}=\underset{h\to 0}{\mathop{\lim }}\frac{\sin h-h}{-h}=0 $

Hence, $ f(x) $ is differentiable at x=1.

For $ f(x)=tan(| x-1 |)+| x-1 | $ , $ f’({1^{+}})=\underset{h\to 0}{\mathop{\lim }}\frac{tanh+h-0}{h}=2 $

$ f’({1^{-}})=\underset{h\to 0}{\mathop{\lim }}\frac{\sin h| -h |-| -h |}{-h} $

$ =\underset{h\to 0}{\mathop{\lim }}\frac{\tan h+h}{-h}=-2 $

Hence, f(x) is non-differentiable at x=1.