Limits Continuity And Differentiability Question 75

Question: If $ f(x)= \begin{cases} x^{3},x^{2}<1 \\ x,x^{2}>1 \\ \end{cases} . $ , then $ f(x) $ is differentiable at

Options:

A) $ (-\infty ,\infty )-{1} $

B) $ (-\infty ,\infty )\tilde{\ }{1,-1} $

C) $ (-\infty ,\infty )\tilde{\ }{1,-1,0} $

D) $ (-\infty ,\infty )\tilde{\ }{-1} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x) $ is clearly continuous for $ x\in R $ . $ f’(x) $ is non-differentiable at $ x=1,-1. $

$ f’(x)= \begin{cases} 3x^{2},x^{2}<1 \\ 1,x^{2}>1 \\ \end{cases} . $

Thus, f(x) is non-differentiable at $ x=1,-1 $