Limits Continuity And Differentiability Question 77

Question: A function f is defined as follows $ f(x)=x^{p}\cos ( \frac{1}{x} ),x\ne 0f(0)=0 $ What conditions should be imposed on p so that f may be continuous at x = 0?

Options:

A) p = 0

B) p > 0

C) p < 0

D) No value of p

Show Answer

Answer:

Correct Answer: B

Solution:

Given function is defined as: $ f(x)= \begin{matrix} x^{p}\cos ( \frac{1}{x} ) & x\ne 0 \\ 0, & x=0 \\ \end{matrix} . $

For continuity: $ LHS:\underset{x\to 0}{\mathop{\lim }}f(x)=RHS\underset{x\to 0}{\mathop{\lim }}f(x)=f(0) $

$ \Rightarrow \underset{x\to 0}{\mathop{\lim }}f(x)=\underset{x\to 0}{\mathop{\lim }}x^{p}\cos ( \frac{1}{x} )=0 $

$ \Rightarrow \underset{x\to 0}{\mathop{\lim }}x^{p}\cos ( \frac{1}{x} )=0 $

$ \cos ( \frac{1}{x} ) $ is always a finite quantity if $ x\to 0 $

$ \Rightarrow x^{p}=0 $ Which is possible only if $ p>0 $ .