Limits Continuity And Differentiability Question 79

Question: If $ f(x)= \begin{cases} x-1,x<0 \\ x^{2}-2x,x\ge 0 \\ \end{cases} ., $ , then

Options:

A) $ f(| x |) $ is discontinuous at x=0

B) $ f(| x |) $ is differentiable at x=0

C) $ |f(x)| $ is non-differentiable at x=0, 2

D) $ |f(x)| $ is continuous at x=0

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)= \begin{cases} | x |-1, \ {| x |}^{2}-2| x |, \ \end{cases} \begin{matrix} | x |<0 \ | x |\ge 0 \ \end{matrix} $ Where $ | x |\le 0 $ is not possible.

Thus neglecting, we obtain $ f(| x |)=\begin{cases} {{| x |}^{2}}-2| x |,| x |\ge 0 \\ \end{cases} $

$ f(| x |)= \begin{cases} x^{2}+2x, & x<0 \\ x^{2}-2x & x\ge 0 \\ \end{cases} ….(i) $

$ \therefore f’(| x |)= \begin{cases} -x, & x<0 \ x, & x\ge 0 \end{cases} . $

Clearly, $ | f(x) | $ is continuous at $ x=0 $ , but non-differentiable at $ x=0 $ . $ f(x)= \begin{cases} | x |-1, \ {| x |}^{2}-2| x |, \ \end{cases} \begin{matrix} | x |<0 \ | x |\ge 0 \ \end{matrix} $

$ g(x)=| f(x) |= \begin{cases} 1-x, & x<0 \\ -x^{2}+2x & 0\le x<2 \\ x^{2}-2x & x\ge 2 \\ \end{cases} ….(ii) $

Clearly, $ | f(x) | $ is discontinuous at $ x=0 $ but differentiable at $ x=2. $

Also, $ g’(x)= \begin{cases} -1, & x<0 \\ 2x+2, & 0<x<2. \\ 2x-2, & x>2 \\ \end{cases} . $

$ | f(x) | $ is non-differentiable at $ x=0 $ and $ x=2. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें