Limits Continuity And Differentiability Question 84

Question: Let $ f:R\to R $ be a function defined by f(x) max $ {x,x^{3}} $ . The set of all points where f(x) is NOT differentiable is

Options:

A) {-1, 1}

B) {-1, 0}

C) {0, 1}

D) {-1, 0, 1}

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=\max .{ x,x^{3} } $

$ = \begin{vmatrix} x; & x<-1 \\ x^{3}; & -1\le x\le 0 \\ x; & 0\le x\le 1 \\ x^{3}; & x\ge 1 \\ \end{vmatrix} . $

$ \therefore f’(x)= \begin{vmatrix} 1; & x<-1 \\ 3x^{2}; & -1\le x\le 0 \\ 1; & 0\le x\le 1 \\ 3x^{2}; & x\ge 1 \\ \end{vmatrix} . $ Clearly f is not differentiable at -1, 0 and 1.