Limits Continuity And Differentiability Question 85

If $ f(x)={x^{\alpha }}\log x $ and $ f(0)=0 $ , then the value of α for which Rolle’s theorem can be applied in [0, 1] is

Options:

A) -2

B) -1

C) 0

D) ½

Show Answer

Answer:

Correct Answer: D

Solution:

For Rolle’s theorem in [a, b], f(a)=f(b), In $ [0,1]\Rightarrow f(0)=f(1)=0 $

$ \because $ the function has to be continuous in [0, 1]

$ \Rightarrow f(0)=\underset{x\to {0^{+}}}{\mathop{\lim }}f(x)=0\Rightarrow \underset{x\to 0^{+}}{\mathop{\lim }}{x^{\alpha }}\log x=0 $

$ \Rightarrow \underset{x\to 0}{\mathop{\lim }}\frac{\log x}{{x^{-\alpha }}}=0 $ Applying L.H. Rule $ \underset{x\to 0}{\mathop{\lim }}\frac{1/x}{-\alpha {x^{-\alpha -1}}}=+\infty $

$ \Rightarrow \underset{x\to 0}{\mathop{\lim }}\frac{-{x^{\alpha }}}{\alpha }=0\Rightarrow \alpha >0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें