Limits Continuity And Differentiability Question 85

Question: If $ f(x)={x^{\alpha }}logx $ and $ f(0)=0 $ , then the value of a for which Rolle’s theorem can be applied in [0, 1] is

Options:

A) -2

B) -1

C) 0

D) ½

Show Answer

Answer:

Correct Answer: D

Solution:

For Rolle’s theorem in [a, b], f(a)=f(b), In $ [0,1]\Rightarrow f(0)=f(1)=0 $

$ \because $ the function has to be continuous in [0, 1]

$ \Rightarrow f(0)=\underset{x\to {0^{+}}}{\mathop{\lim }}f(x)=0\Rightarrow \underset{x\to 0}{\mathop{\lim }}{x^{\alpha }}\log x=0 $

$ \Rightarrow \underset{x\to 0}{\mathop{\lim }}\frac{\log x}{{x^{-\alpha }}}=0 $ Applying L.H. Rule $ \underset{x\to 0}{\mathop{\lim }}\frac{1/x}{-\alpha {x^{-\alpha -1}}}=0 $

$ \Rightarrow \underset{x\to 0}{\mathop{\lim }}\frac{-{x^{\alpha }}}{\alpha }=0\Rightarrow \alpha >0 $