Limits Continuity And Differentiability Question 9

Question: Let $ f:[2,7]\to [0,\infty ) $ be a continuous and differentiable function. Then, $ (f(7)-f(2))\frac{{{(f(7))}^{2}}+{{(f(2))}^{2}}+f(2)f(7)}{3} $ is, where $ c\in [2,7] $ [2, 7].

Options:

A) $ 5f^{2}(c)f’(c) $

B) $ 5f’(c) $

C) $ f(c)f’(c) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ g(x)=f^{3}(x) $

$ \Rightarrow g’(x)=3f^{2}(x)\cdot f’(x) $

$ \because f:[2,7]\to [0,\infty )\Rightarrow g:[2,7]\to [0,\infty ) $

Using Lagrange’s mean value theorem on g(x), We get $ g’(c)=\frac{g(7)-g(2)}{5},c\in [2,7] $

$ \Rightarrow 2f^{2}(c)f’(c)=(f(7)-f(2)) $

$ \frac{{{(f(7))}^{2}}+{{(f(2))}^{2}}+f(2)f(7)}{3} $