Limits Continuity And Differentiability Question 90

Question: If $ y=log _{10}x+log _{x}10+log _{x}x+log _{10}10 $ then what is $ {{( \frac{dy}{dx} )} _{x=10}} $ equal to?

Options:

A) 10

B) 2

C) 1

D) 0

Show Answer

Answer:

Correct Answer: D

Solution:

$ y={\log _{10}}x+{\log _{x}}10+{\log _{x}}x+{\log _{10}}10 $

$ y={\log _{10}}x+{\log _{x}}10+1+1 $ Differentiating equation w.r.t.x $ \frac{dy}{dx}=\frac{1}{x{\log _{e}}10}-\frac{1}{{{({\log _{10}}x)}^{2}}}.\frac{1}{(x\log 10)} $

$ =\frac{1}{x{\log _{e}}10}[ 1-\frac{1}{{{({\log _{10}}x)}^{2}}} ] $

$ {{( \frac{dy}{dx} )} _{x=10}}=\frac{1}{10\log _{e}10}[1-1]=0 $

$ [ Note:{\log _{x}}10=\frac{{\log _{10}}10}{{\log _{10}}x}=\frac{1}{{\log _{10}}x} \\ \frac{d}{dx}[ \frac{1}{{\log _{10}}x} ]=-{{({\log _{10}}x)}^{-2}}\times \frac{1}{x{\log _{e}}10} \\ =-\frac{1}{{{({\log _{10}}x)}^{2}}x{\log _{e}}10} ] $