Limits Continuity And Differentiability Question 91

Question: If $ {{(x-a)}^{2}}+{{(y-b)}^{2}}=c^{2} $ , for some c > 0, then $ \frac{{{[ 1+{{( \frac{dy}{dx} )}^{2}} ]}^{\frac{3}{2}}}}{\frac{d^{2}y}{dx^{2}}} $ is

Options:

A) Is a constant dependent on a

B) Is a constant dependent on b

C) Is a constant independent of a and b

D) 0

Show Answer

Answer:

Correct Answer: C

Solution:

Given relation is $ {{(x-a)}^{2}}+{{(y-b)}^{2}}=c^{2},c>0 $

Let $ x-a=c\cos \theta $ and $ y-b=c\sin \theta $ . Therefore,

$ \frac{dx}{d\theta }=-c\sin \theta $ and $ \frac{dy}{d\theta }=c\cos \theta $

$ \therefore \frac{dy}{dx}=-\cot \theta $

Differentiating both sides with respect to $ \theta $ , we get

$ \frac{d}{d\theta }( \frac{dy}{dx} )=\frac{d}{d\theta }(-cot\theta ) $

or $ \frac{d}{dx}( \frac{dy}{dx} )\frac{dx}{d\theta }=\cos ec^{2}\theta $

or $ \frac{d^{2}y}{dx^{2}}(-csin\theta )=\cos ec^{2}\theta $

or $ \frac{d^{2}y}{dx^{2}}=\frac{\cos ec^{2}\theta }{c} $

$ \therefore \frac{{{[ 1+{{( \frac{dy}{dx} )}^{2}} ]}^{\frac{3}{2}}}}{\frac{d^{2}y}{dx^{2}}}=\frac{c{{[ 1+{{\cot }^{2}}\theta ]}^{\frac{3}{2}}}}{-\cos ec^{3}\theta }=\frac{c{{(cosec^{2}\theta )}^{\frac{3}{2}}}}{-\cos ec^{3}\theta } $

$ =-c. $

Which is constant and is independent of a and b.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें