Limits Continuity And Differentiability Question 92

Question: The function $ f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x} $ is not defined at $ x=\pi $ . The value of $ f(\pi ) $ so that $ f(x) $ is continuous at $ x=\pi $ is

Options:

A) $ -\frac{1}{2} $

B) $ \frac{1}{2} $

C) $ -1 $

D) $ 1 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ \underset{x\to \pi }{\mathop{\lim }}\frac{1-\sin x+\cos x}{1+\sin x+\cos x} $ Using L’hospital’s rule

$ \Rightarrow \underset{x\to \pi }{\mathop{\lim }}\frac{-\cos x-sinx}{\cos x-\sin x}=\frac{-\cos \pi -\sin \pi }{\cos \pi -\sin \pi } $

$ =\frac{-(-1)-0}{-1-0}=-1 $