Limits Continuity And Differentiability Question 95

Question: If $ y={{\log }^{n}}x $ , where $ {{\log }^{n}} $ means log log log… (repeated n time), then $ xlogxlogxlog^{2}xlog^{3}x $

$ ….{{\log }^{n-1}}x{{\log }^{n}}x\frac{dy}{dx} $ is equal to

Options:

A) $ \log x $

B) $ {{\log }^{n}}x $

C) $ \frac{1}{\log x} $

D) 1

Show Answer

Answer:

Correct Answer: B

Solution:

$ \because y={{\log }^{n}}x $ On differentiating w.r.t.x, we get $ x\log x{{\log }^{2}}x{{\log }^{3}}x….{{\log }^{n-1}}x{{\log }^{n}}x\frac{dy}{dx} $

$ =\frac{x\log x{{\log }^{2}}x{{\log }^{3}}x….{{\log }^{n-1}}x{{\log }^{n}}x.1}{x\log x{{\log }^{2}}x{{\log }^{3}}x….{{\log }^{n-1}}x} $

$ ={{\log }^{n}}x $