Linear Programming Question 115

Question: Corner points of the feasible region for an LPP are $ (0,2) $ $ (3,0) $ $ (6,0) $ , $ (6,8) $ and $ (0,5) $ .Let $ F=4x+6y $ be the objective function. The minimum value of F occurs at

Options:

A) $ (0,2) $ Only

B) $ (3,0) $ Only

C) The mind-point of the line segment joining the points $ (0,2) $ and $ (3,2) $ only

D) Any point on the line segment joining the points $ (0,2) $ and $ (3,0) $

Show Answer

Answer:

Correct Answer: D

Solution:

Construct the following table of objective function

Corner point Value of $ F=4x+6y $
(0, 2) $ 4\times 0+6\times 2=12 $
(3, 0) $ 4\times 3+6\times 0=12 $
(6, 0) $ 4\times 6+6\times 0=24 $
(6, 8) $ 4\times 6+6\times 8=72 $
(0, 5) $ 4\times 0+6\times 5=30 $

}←minimum }←maximum

Since the minimum value (F) =12 occurs at two distinct corner points, it occurs at every points of the segment joining these two points.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें