Linear Programming Question 115

Question: Corner points of the feasible region for an LPP are $ (0,2) $ $ (3,0) $ $ (6,0) $ , $ (6,8) $ and $ (0,5) $ .Let $ F=4x+6y $ be the objective function. The minimum value of F occurs at

Options:

A) $ (0,2) $ Only

B) $ (3,0) $ Only

C) The mind-point of the line segment joining the points $ (0,2) $ and $ (3,2) $ only

D) Any point on the line segment joining the points $ (0,2) $ and $ (3,0) $

Show Answer

Answer:

Correct Answer: D

Solution:

Construct the following table of objective function

Corner point Value of $ F=4x+6y $
(0, 2) $ 4\times 0+6\times 2=12 $
(3, 0) $ 4\times 3+6\times 0=12 $
(6, 0) $ 4\times 6+6\times 0=24 $
(6, 8) $ 4\times 6+6\times 8=72 $
(0, 5) $ 4\times 0+6\times 5=30 $

}←minimum }←maximum

Since the minimum value (F) =12 occurs at two distinct corner points, it occurs at every points of the segment joining these two points.