Linear Programming Question 61

Question: For the L.P. problem Min $ z=2x_1+3x_2 $ such that $ -x_1+2x_2\le 4, $ $ x_1+x_2\le 6,\ \ x_1+3x_2\ge 9 $ and $ x_1,\ x_2\ge 0 $

Options:

A) $ x_1=1.2 $

B) $ x_2=2.6 $

C) $ z=10.2 $

D) All the above

Show Answer

Answer:

Correct Answer: D

Solution:

The graph of linear programming problem is as given below

Hence the required feasible region is given by the graph whose vertices are $ A(1.2,2.6),B(4.5,1.5) $ and $ C( \frac{8}{3},\frac{10}{3} ) $

Thus objective function is minimum at $ A(1.2,2.6) $

So $ x_1=1.2,x_2=2.6 $ and $ z=2\times 1.2+3\times 2.6=10.2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें