Linear Programming Question 8

Question: $ Z=7x+y, $ subject to $ 5x+y\ge 5,x+y\ge 3,x\ge 0,y\ge 0. $ The minimum value of Z occurs at

Options:

A) (3, 0)

B) $ ( \frac{1}{2},\frac{5}{2} ) $

C) (7, 0)

D) (0, 5)

Show Answer

Answer:

Correct Answer: D

Solution:

We have, maximize $ Z=7x+y. $ subject to: $ 5x+y\ge 5,x+y\ge 3,x,y\ge 0. $ Let $ {\ell_1}:5x+y=5 $

$ {\ell_2}:x+y=3 $

$ {\ell_3}:x=0 $ and $ {\ell_4}:y=0 $

Shaded portion is the feasible region,

Where $ A(3,0),B( \frac{1}{2},\frac{5}{2} ),C(0,5) $

For B: solving $ {\ell_1} $ and $ {\ell_2} $ , we get $ B( \frac{1}{2},\frac{5}{2} ) $

Now maximize $ Z=7x+y $

Z at B $ ( \frac{1}{2},\frac{5}{2} )=7( \frac{1}{2} )+\frac{5}{2}=6 $

Z at C (0, 5) =7(0) +5=5

Thus Z, is minimized at C (0, 5) and its minimum value is 5