Linear Programming Question 81

Question: For the L.P. problem Max $ z=3x_1+2x_2 $ such that $ 2x_1-x_2\ge 2 $ , $ x_1+2x_2\le 8 $ and $ x_1,\ x_2\ge 0 $ , $ z= $

Options:

12

24

36

40

Show Answer

Answer:

Correct Answer: B

Solution:

Change the inequalities into equations and draw the graph of lines, thus we get the required feasible region. It is a bounded region, bounded by the vertices $ A(1,0),B(8,0) $ and $ C( \frac{12}{5},\frac{14}{5} ) $ . Now by evaluation of the objective function for the vertices of feasible region it is found to be maximum at (8,0). Hence the solution is $ z=3\times 8+0\times 2=24 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें