Mathematical Logic And Boolean Algebra Question 53

Question: Identify the false statements

Options:

A) $ \tilde{\ }[p\vee (\tilde{\ }q)]\equiv (\tilde{\ }p)\vee q $

B) $ [p\vee q]\vee (\tilde{\ }p) $ is a tautology

C) $ [p\wedge q)\wedge (\tilde{\ }p) $ is a contradiction

D) $ \tilde{\ }[p\vee q]\equiv (\tilde{\ }p)\vee (\tilde{\ }q) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] since $ \tilde{\ }(p\vee q)\equiv \tilde{\ }p\wedge \tilde{\ }q $ (By De-Morgan?s? law)
$ \therefore \tilde{\ }(p\vee q)\ne ,\tilde{\ }p\vee \tilde{\ }q $
$ \therefore $ [d] is the false statement