Matrices Practice Questions Ques14

Question: If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$, what is $AB$?

Options:

(A) $\begin{pmatrix} 4 & 6 \\ 10 & 15 \end{pmatrix}$

(B) $\begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix}$

(C) $\begin{pmatrix} 4 & 6 \\ 9 & 15 \end{pmatrix}$

(D) $\begin{pmatrix} 4 & 6 \\ 10 & 18 \end{pmatrix}$

Show Answer

Answer: B

Explanation:

(A) Incorrect. This is not the correct result of the matrix multiplication.

(B) Correct. Matrix multiplication is performed as follows: $\begin{pmatrix} 1 \cdot 2 + 2 \cdot 1 & 1 \cdot 0 + 2 \cdot 3 \\ 3 \cdot 2 + 4 \cdot 1 & 3 \cdot 0 + 4 \cdot 3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix}$.

(C) Incorrect. This is not the correct result of the matrix multiplication.

(D) Incorrect. This is not the correct result of the matrix multiplication.