Matrices Practice Questions Ques14

Question: If $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$, what is $AB$?

Options:

(A) $\begin{pmatrix} 4 & 6 \\ 10 & 15 \end{pmatrix}$

(B) $\begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix}$

(C) $\begin{pmatrix} 4 & 6 \\ 9 & 15 \end{pmatrix}$

(D) $\begin{pmatrix} 4 & 6 \\ 10 & 18 \end{pmatrix}$

Show Answer

Answer: B

Explanation:

(A) Incorrect. This is not the correct result of the matrix multiplication.

(B) Correct. Matrix multiplication is performed as follows: $\begin{pmatrix} 1 \cdot 2 + 2 \cdot 1 & 1 \cdot 0 + 2 \cdot 3 \\ 3 \cdot 2 + 4 \cdot 1 & 3 \cdot 0 + 4 \cdot 3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix}$.

(C) Incorrect. This is not the correct result of the matrix multiplication.

(D) Incorrect. This is not the correct result of the matrix multiplication.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें