Pair Of Straight Lines Question 104

Question: If $ y=mx $ be one of the bisectors of the angle between the lines $ ax^{2}-2hxy+by^{2}=0 $ , then

Options:

A) $ h(1+m^{2})+m(a-b)=0 $

B) $ h(1-m^{2})+m(a+b)=0 $

C) $ h(1-m^{2})+m(a-b)=0 $

D) $ h(1+m^{2})+m(a+b)=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

Here equation of one bisector of angle is $ y-mx=0, $ therefore equation of second is $ x+my=0 $ .

Hence combined equation is $ (x+my)(y-mx)=0 $

$ \Rightarrow -mx^{2}-xy(m^{2}-1)+my^{2}=0 $ …(i)

Also equations of bisectors of $ ax^{2}-2hxy+by^{2}=0 $ is $ -hx^{2}-(a-b)xy+hy^{2}=0 $ …..(ii)

Hence (i) and (ii) are the same equations, therefore $ \frac{m}{h}=\frac{m^{2}-1}{(a-b)}\Rightarrow h(m^{2}-1)=m(a-b) $

$ \Rightarrow m(a-b)+h(1-m^{2})=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें