Pair Of Straight Lines Question 106

Question: If the bisectors of the angles between the pairs of lines given by the equation $ ax^{2}+2hxy+by^{2}=0 $ and $ ax^{2}+2hxy+by^{2}+\lambda (x^{2}+y^{2})=0 $ be coincident, then $ \lambda = $

Options:

A) a

B) b

C) $ h $

D) Any real number

Show Answer

Answer:

Correct Answer: D

Solution:

Bisectors of $ ax^{2}+2hxy+by^{2}=0 $ are $ \frac{x^{2}-y^{2}}{a-b}=\frac{xy}{h} $ …..(i)

and of $ ax^{2}+2hxy+by^{2}+\lambda (x^{2}+y^{2})=0 $

i.e., $ (a+\lambda )x^{2}+2hxy+(b+\lambda )y^{2}=0 $

are $ \frac{x^{2}-y^{2}}{(a+\lambda )-(b+\lambda )}=\frac{xy}{h} $ …..(ii)

Which is the same equation as equation (i).

Hence for any $ \lambda $ belonging to real numbers, the lines will have same bisectors.