Pair Of Straight Lines Question 113

Question: If the pair of straight lines given by $ Ax^{2}+2Hxy+By^{2}=0 $ , $ (H^{2}>AB) $ forms an equilateral triangle with line $ ax+by+c=0 $ , then $ (A+3B)(3A+B) $ is

[EAMCET 2003]

Options:

A) $ H^{2} $

B) $ -H^{2} $

C) $ 2H^{2} $

D) $ 4H^{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

We know that the pair of lines $ (a^{2}-3b^{2})x^{2}+8abxy+(b^{2}-3a^{2})y^{2}=0 $ with the line $ ax+by+c=0 $ form an equilateral triangle.

Hence comparing with $ Ax^{2}+2Hxy+By^{2}=0 $ , then $ A=a^{2}-3b^{2},B=b^{2}-3a^{2},2H=8ab $ .

Now, $ (A+3B)(3A+B)=(-8a^{2})(-8b^{2}) $ = $ {{(8ab)}^{2}}={{(2H)}^{2}}=4H^{2} $