Pair Of Straight Lines Question 116

Question: The square of distance between the point of intersection of the lines represented by the equation $ ax^{2}+2hxy+by^{2}+2gx+2fy+c=0 $ and origin, is

Options:

A) $ \frac{c(a+b)-f^{2}-g^{2}}{ab-h^{2}} $

B) $ \frac{c(a-b)+f^{2}+g^{2}}{\sqrt{ab-h^{2}}} $

C) $ \frac{c(a+b)-f^{2}-g^{2}}{ab+h^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let the lines represented by given equation be $ y=m_1x+c_1 $ and $ y=m_2x+c_2 $ .

Then $ ax^{2}+2hxy+by^{2}+2gx+2fy+c=0 $

$ =b(y-m_1x-c_1)(y-m_2x-c_2)=0 $

Comparing the coefficients of $ x^{2},\ xy,\ x,\ y $ and constant term, we get $ m_1m_2=\frac{a}{b},\ m_1+m_2=\frac{-2h}{b},\ m_1c_2+m_2c_1=\frac{2g}{b}, $

$ c_1+c_2=-\frac{2f}{b} $ and $ c_1c_2=\frac{c}{b} $

Also the point of intersection of $ y=m_1x+c_1 $ and $ y=m_2x+c_2 $ is $ ( \frac{c_2-c_1}{m_1-m_2},\frac{m_1c_2-m_2c_1}{m_1-m_2} ) $

Therefore, the square of distance of this point from origin is $ {{( \frac{c_2-c_1}{m_1-m_2} )}^{2}}+\frac{{{(m_1c_2-m_2c_1)}^{2}}}{{{(m_1-m_2)}^{2}}} $

$ =\frac{[{{(c_1+c_2)}^{2}}-4c_1c_2]+[{{(m_1c_2+m_2c_1)}^{2}}-4m_1m_2c_1c_2]}{{{(m_1+m_2)}^{2}}-4m_1m_2} $

Now putting the value defined above, we get the required distance i.e., $ \frac{-c(a+b)+f^{2}+g^{2}}{h^{2}-ab} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें