Pair Of Straight Lines Question 117

Question: If one of the line represented by the equation $ ax^{2}+2hxy+by^{2}=0 $ is coincident with one of the line represented by $ {a}‘x^{2}+2{h}‘xy+{b}‘y^{2}=0 $ , then

Options:

A) $ {{(a{b}’-{a}‘b)}^{2}}=4(a{h}’-{a}‘h)(h{b}’-{h}‘b) $

B) $ {{(a{b}’+{a}‘b)}^{2}}=4(a{h}’-{a}‘h)(h{b}’-{h}‘b) $

C) $ {{(a{b}’-{a}‘b)}^{2}}=(a{h}’-{a}‘h)(h{b}’-{h}‘b) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

The equation of given lines are $ ax^{2}+2hxy+by^{2}=0 $ …..(i)

$ a’x^{2}+2h’xy+b’y^{2}=0 $ …..(ii)

Let common line to both is $ y=mx $ , then it will satisfy both the above equations.

Hence, $ a+2mh+bm^{2}=0 $ …..(iii)

and $ a’+2mh’+b’m^{2}=0 $ …..(iv)

Now eliminating ’m’ from the equation (iii) and (iv),

we get $ \frac{m^{2}}{2ha’-2h’a}=\frac{-m}{ba’-b’a}=\frac{1}{2bh’-2b’h} $

$ \Rightarrow m^{2}=\frac{ha’-h’a}{bh’-b’h} $ …..(v) and $ m^{2}=\frac{{{(ab’-ba’)}^{2}}}{4{{(bh’-b’h)}^{2}}} $ …..(vi)

From (v) and (vi), we get the required condition.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें