Pair Of Straight Lines Question 118

Question: The equation of the pair of straight lines, each of which makes an angle $ \alpha $ with the line $ y=x $ , is

[MP PET 1990]

Options:

A) $ x^{2}+2xy\sec 2\alpha +y^{2}=0 $

B) $ x^{2}+2xycosec2\alpha +y^{2}=0 $

C) $ x^{2}-2xycosec2\alpha +y^{2}=0 $

D) $ x^{2}-2xy\sec 2\alpha +y^{2}=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

Any line through the origin is $ y=mx $ .

If it makes an angle $ \alpha $ with the line $ y=x $ , then we should have $ \tan \alpha =\pm { \frac{m_1-m_2}{1+m_1m_2} }=\pm \frac{(m-1)}{1+m} $ or $ {{(1+m)}^{2}}{{\tan }^{2}}\alpha ={{(m-1)}^{2}} $

$ \Rightarrow m^{2}-2m{ \frac{1+{{\tan }^{2}}\alpha }{1-{{\tan }^{2}}\alpha } }+1=0 $

$ \Rightarrow m^{2}-2m\sec 2\alpha +1=0 $ , $ { \because \frac{1+{{\tan }^{2}}\alpha }{1-{{\tan }^{2}}\alpha }=\sec 2\alpha } $

But $ m=\frac{y}{x}, $ hence on eliminating m, we get the required equation $ y^{2}-2xy\sec 2\alpha +x^{2}=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें