Pair Of Straight Lines Question 119

Question: If the bisectors of the lines $ x^{2}-2pxy-y^{2}=0 $ be $ x^{2}-2qxy-y^{2}=0, $ then

[MP PET 1993; DCE 1999; RPET 2003; AIEEE 2003; Kerala (Engg.) 2005]

Options:

A) $ pq+1=0 $

B) $ pq-1=0 $

C) $ p+q=0 $

D) $ p-q=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Bisector of the angle between the lines $ x^{2}-2pxy-y^{2}=0 $ is $ \frac{x^{2}-y^{2}}{xy}=\frac{1-(-1)}{-p} $

$ \Rightarrow px^{2}+2xy-py^{2}=0 $

But it is represented by $ x^{2}-2qxy-y^{2}=0 $ .

Therefore $ \frac{p}{1}=\frac{2}{-2q}\Rightarrow pq=-1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें