Pair Of Straight Lines Question 126

Question: The equation $ x^{2}-3xy+\lambda y^{2}+3x-5y+2=0 $ when $ \lambda $ is a real number, represents a pair of straight lines. If $ \theta $ is the angle between the lines, then $ cose{c^{2}}\theta $ =

[EAMCET 1992]

Options:

A) 3

B) 9

C) 10

D) 100

Show Answer

Answer:

Correct Answer: C

Solution:

The equation $ x^{2}-3xy+\lambda y^{2}+3x-5y+2=0 $ represents a pair of straight lines.

$ \therefore 2\lambda +2( -\frac{5}{2} )( \frac{3}{2} )( -\frac{3}{2} )-\frac{25}{4}-\frac{9\lambda }{4}-\frac{18}{4}=0 $

$ \Rightarrow \lambda =2 $

If $ \theta $ is the angle between the lines, then $ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{a+b}=\frac{2\sqrt{(9/4)-2}}{1+2}=\frac{1}{3} $

$ \Rightarrow cose{c^{2}}\theta =1+{{\cot }^{2}}\theta =1+9=10 $ .