Pair Of Straight Lines Question 126

Question: The equation $ x^{2}-3xy+\lambda y^{2}+3x-5y+2=0 $ when $ \lambda $ is a real number, represents a pair of straight lines. If $ \theta $ is the angle between the lines, then $ cose{c^{2}}\theta $ =

[EAMCET 1992]

Options:

3

9

10

100

Show Answer

Answer:

Correct Answer: C

Solution:

The equation $ x^{2}-3xy+\lambda y^{2}+3x-5y+2=0 $ represents a pair of straight lines.

$ \therefore 2\lambda +2( -\frac{5}{2} )( \frac{3}{2} )( -\frac{3}{2} )-\frac{25}{4}-\frac{9\lambda }{4}-\frac{18}{4}=0 $

$ \Rightarrow \lambda =2 $

If $ \theta $ is the angle between the lines, then $ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{a+b}=\frac{2\sqrt{(9/4)-2}}{1+2}=\frac{2\sqrt{1/4}}{3}=\frac{1}{3} $

$ \Rightarrow \csc^{2}\theta =1+\cot^{2}\theta =1+9=10 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें