Pair Of Straight Lines Question 128

Question: The lines joining the origin to the points of intersection of the line $ y=mx+c $ and the circle $ x^{2}+y^{2}=a^{2} $ will be mutually perpendicular, if

[Roorkee 1977]

Options:

A) $ a^{2}(m^{2}+1)=c^{2} $

B) $ a^{2}(m^{2}-1)=c^{2} $

C) $ a^{2}(m^{2}+1)=c^{2} $

D) $ a^{2}(m^{2}-1)=2c^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Making the equation of circle homogeneous with the help of line $ y=mx+c, $ we get $ x^{2}+y^{2}-a^{2}{{( \frac{y-mx}{c} )}^{2}}=0 $ .

$ \Rightarrow c^{2}x^{2}+c^{2}y^{2}-a^{2}y^{2}-a^{2}m^{2}x^{2}+2a^{2}mxy=0 $

$ \Rightarrow (c^{2}-a^{2}m^{2})x^{2}+(c^{2}-a^{2})y^{2}-2a^{2}mxy=0 $ …..(i)

Hence lines represented by (i) are perpendicular, if $ c^{2}-a^{2}m^{2}+c^{2}-a^{2}=0\Rightarrow 2c^{2}=a^{2}(1+m^{2}) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें