Pair Of Straight Lines Question 134

Question: The equation of the pair of straight lines parallel to x-axis and touching the circle $ x^{2}+y^{2}-6x-4y-12=0 $

[Kerala (Engg.) 2002]

Options:

A) $ y^{2}-4y-21=0 $

B) $ y^{2}+4y-21=0 $

C) $ y^{2}-4y+21=0 $

D) $ y^{2}+4y+21=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let the lines are $ y=m_1x+c_1 $ and $ y=m_2x+c_2 $.

Since pair of straight lines parallel to x-axis, $ m_1=m_2=0 $ and the lines will be $ y=c_1 $ and $ y=c_2 $

Given circle is $ x^{2}+y^{2}-6x-4y-12=0 $ , centre (3, 2) and radius = 5.

Here, the perpendicular drawn from centre to the lines are CP and $ C{P}’ $ . $ CP=\frac{2-c_1}{\sqrt{1}}=\pm 5 $

Therefore $ 2-c_1=\pm 5 $

$ c_1=7 $ and $ c_1=-3 $

Hence the lines are $ y-7=0,y+3=0 $ i.e., $ (y-7)(y+3)=0 $

Pair of straight lines is $ y^{2}-4y-21=0 $ .