Pair Of Straight Lines Question 134

Question: The equation of the pair of straight lines parallel to x-axis and touching the circle $ x^{2}+y^{2}-6x-4y-12=0 $

[Kerala (Engg.) 2002]

Options:

A) $ y^{2}-4y-21=0 $

B) $ y^{2}+4y-21=0 $

C) $ y^{2}-4y+21=0 $

D) $ y^{2}+4y+21=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let the lines are $ y=m_1x+c_1 $ and $ y=m_2x+c_2 $.

Since pair of straight lines parallel to x-axis, $ m_1=m_2=0 $ and the lines will be $ y=c_1 $ and $ y=c_2 $

Given circle is $ x^{2}+y^{2}-6x-4y-12=0 $ , centre (3, 2) and radius = 5.

Here, the perpendicular drawn from centre to the lines are CP and $ C{P}’ $ . $ CP=\frac{2-c_1}{\sqrt{1}}=\pm 5 $

Therefore $ 2-c_1=\pm 5 $

$ c_1=7 $ and $ c_1=-3 $

Hence the lines are $ y-7=0,y+3=0 $ i.e., $ (y-7)(y+3)=0 $

Pair of straight lines is $ y^{2}-4y-21=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें