Pair Of Straight Lines Question 135

Question: Two of the lines represented by the equation $ ay^{4}+bxy^{3}+cx^{2}y^{2}+dx^{3}y+ex^{4}=0 $ will be perpendicular, then

[Kurukshetra CEE 1998]

Options:

A) $ (b+d)(ad+be)+{{(e-a)}^{2}}(a+c+e)=0 $

B) $ (b+d)(ad+be)+{{(e+a)}^{2}}(a+c+e)=0 $

C) $ (b-d)(ad-be)+{{(e-a)}^{2}}(a+c+e)=0 $

D) $ (b-d)(ad-be)+{{(e+a)}^{2}}(a+c+e)=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ ay^{4}+bxy^{3}+cx^{2}y^{2}+dx^{3}y+ex^{4} $

$ =(ax^{2}+pxy-ay^{2})(x^{2}+qxy+y^{2}) $

Comparing the coefficient of similar terms. We get, $ b=aq-p,\ c=-pq $ , $ d=aq+p,\ e=-a $

$ b+d=2aq,\ e-a=-2a $

$ ad+be=2ap,a+c+e=-pq $

$ (b+d)(ad+be)=-{{(e-a)}^{2}}(a+c+e) $

$ (b+d)(ad+eb)+{{(e-a)}^{2}}(a+c+e)=0 $ .