Pair Of Straight Lines Question 137

Question: The lines represented by the equation $ ax^{2}+2hxy+by^{2}+2gx+2fy+c=0 $ will be equidistant from the origin, if

Options:

A) $ f^{2}+g^{2}=c(b-a) $

B) $ f^{4}+g^{4}=c(bf^{2}+ag^{2}) $

C) $ f^{4}-g^{4}=c(bf^{2}-ag^{2}) $

D) $ f^{2}+g^{2}=af^{2}+bg^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Let the equations represented by $ ax^{2}+2hxy+by^{2}+2gx+2fy+c=0 $ be $ lx+my+n=0 $ and $ l’x+m’y+n’=0 $ .

Then the combined equation represented by these lines is given by $ (lx+my+n)(l’x+m’y+n’)=0 $

So, it must be similar with the given equation.

On comparing, we get $ ll’=a,\ mm’=b\ \ nn’=c,\ \ lm’+ml’=2h,\ \ ln’+l’n=2g $ , $ mn’+nm’=2f $

According to the condition, the length of perpendiculars drawn from origin to the lines are same.

So, $ \frac{n}{\sqrt{l^{2}+m^{2}}}=\frac{n’}{\sqrt{l{{’}^{2}}+m{{’}^{2}}}}=\frac{{{(nn’)}^{2}}}{(l^{2}+m^{2})(l{{’}^{2}}+m{{’}^{2}})} $ Now on eliminating $ l,\ m,\ l’,\ m’ $ and $ n,\ n’ $ ,

we get the required condition $ f^{4}-g^{4}=c(bf^{2}-ag^{2}). $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें