Pair Of Straight Lines Question 144

Question: If the slope of one of the lines represented by $ ax^{2}+2hxy+by^{2}=0 $ be the square of the other, then

Options:

A) $ a^{2}b+ab^{2}-6abh+8h^{3}=0 $

B) $ a^{2}b+ab^{2}+6abh+8h^{3}=0 $

C) $ a^{2}b+ab^{2}-3abh+8h^{3}=0 $

D) $ a^{2}b+ab^{2}-6abh-8h^{3}=0 $

Show Answer

Answer:

Correct Answer: A

Solution:

Here, $ m_1=m_2^{2}\Rightarrow m_2^{2}+m_2=\frac{-2h}{b} $ ….. (i) and $ m_2^{2}m_2=\frac{a}{b}\Rightarrow m_2={{( \frac{a}{b} )}^{1/3}} $ …..(ii)

Putting this value of $ m_2 $ in (i), we get $ {{{ {{( \frac{a}{b} )}^{1/3}} }}^{2}}+{{( \frac{a}{b} )}^{1/3}}=\frac{-2h}{b} $

On cubing both sides, we get $ {{( \frac{a}{b} )}^{2}}+\frac{a}{b}+3{{( \frac{a}{b} )}^{2/3}}.{{( \frac{a}{b} )}^{1/3}}.{ {{( \frac{a}{b} )}^{2/3}}+{{( \frac{a}{b} )}^{1/3}} }=\frac{-8h^{3}}{b^{3}} $

Therefore $ {{( \frac{a}{b} )}^{2}}+\frac{a}{b}-\frac{6ah}{b^{2}}=\frac{-8h^{3}}{b^{3}} $

$ { \because {{( \frac{a}{b} )}^{2/3}}+{{( \frac{a}{b} )}^{1/3}}=\frac{-2h}{b} } $

Therefore $ ab(a+b)-6abh+8h^{3}=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें