Pair Of Straight Lines Question 23

Question: The equation of one of the line represented by the equation $ x^{2}+2xy\cot \theta -y^{2}=0 $ , is

Options:

A) $ x-y\cot \theta =0 $

B) $ x+y\tan \theta =0 $

C) $ x\sin \theta +y(\cos \theta +1)=0 $

D) $ x\cos \theta +y(\sin \theta +1)=0 $

Show Answer

Answer:

Correct Answer: C

Solution:

The lines represented by the equation $ x^{2}+2xy\cot \theta -y^{2}=0 $ are $ ax+hy\pm y\sqrt{h^{2}-ab}=0 $

$ \Rightarrow x+y\cot \theta \pm y\sqrt{{{\cot }^{2}}\theta +1}=0 $

$ \Rightarrow x+y( \frac{\cos \theta }{\sin \theta }\pm \frac{1}{\sin \theta } )=0 $

$ \Rightarrow x\sin \theta +y(\cos \theta \pm 1)=0 $ Hence, one line is $ x\sin \theta +y(\cos \theta +1)=0 $ .