Pair Of Straight Lines Question 30

The condition of representing the coincident lines by the general quadratic equation $ f(x,y)=0 $ is

Options:

A) $ \Delta =0 $ and $ h^{2}=ab $

B) $ \Delta =0 $ and $ a+b=0 $

C) $ \Delta =0 $ and $ h^{2}=ab $ , $ g^{2}=ac $ , $ f^{2}=bc $

D) $ h^{2}=ab $ , $ g^{2}=ac $ and $ f^{2}=bc $

Show Answer

Answer:

Correct Answer: B , C

Solution:

Comparing the given equation with the standard equation, we get $ a=4 $ and $ b=-7 $ .

Let $ m_1 $ and $ m_2 $ be the slopes of given lines.

Therefore sum of the slopes $ (m_1+m_2)=-\frac{2h}{b}=-\frac{2h}{7} $ and product of the slopes $ (m_1m\2)=\frac{a}{b}=\frac{4}{-7} $ . $ \because m_1+m_2=m_1m_2 $ , therefore $ -\frac{2h}{7}=\frac{4}{-7} $ or $ h=-2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें