Pair Of Straight Lines Question 42

Question: The lines $ {{(lx+my)}^{2}}-3{{(mx-ly)}^{2}}=0 $ and $ lx+my+n=0 $ form

Options:

A) An isosceles triangle

B) A right angled triangle

C) An equilateral triangle

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Lines are $ [(l+\sqrt{3}m)x+(m-\sqrt{3}l)y][(l-\sqrt{3}m)x+(m+\sqrt{3}l)y]=0 $ and $ L_3=lx+my+n=0 $ .

L1 and L2 are above two lines. $ S_1=-\frac{(l+\sqrt{3}m)}{(m-\sqrt{3}l)},\ \ \ S_2=-\frac{(l-\sqrt{3}m)}{(m+\sqrt{3}l)},\ \ \ S_3=-\frac{l}{m} $ (where $ S_1 $ , $ S_2 $ and $ S_3 $ are slopes of the lines) $ {\theta _{13}}={{\tan }^{-1}}[ \frac{-( \frac{l+\sqrt{3}m}{m-\sqrt{3}l} )+\frac{l}{m}}{1+( \frac{l+\sqrt{3}m}{m-\sqrt{3}l} )\frac{l}{m}} ] $

$ ={{\tan }^{-1}}( \frac{-\sqrt{3}m^{2}-\sqrt{3}l^{2}}{l^{2}+m^{2}} )=-60{}^\circ $

$ {\theta _{23}}={{\tan }^{-1}}[ \frac{-( \frac{l-\sqrt{3}m}{m+\sqrt{3}l} )+\frac{l}{m}}{1+( \frac{l-\sqrt{3}m}{m+\sqrt{3}l} )( \frac{l}{m} )} ] $

$ ={{\tan }^{-1}}( \frac{\sqrt{3}m^{2}+\sqrt{3}l^{2}}{m^{2}+l^{2}} )={{\tan }^{-1}}(\sqrt{3})=60{}^\circ $ Hence, triangle is equilateral if all sides are equal.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें