Pair Of Straight Lines Question 50

Question: The equation of the locus of foot of perpendiculars drawn from the origin to the line passing through a fixed point (a, b), is

Options:

A) $ x^{2}+y^{2}-ax-by=0 $

B) $ x^{2}+y^{2}+ax+by=0 $

C) $ x^{2}+y^{2}-2ax-2by=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \lambda (x-a)+(y-b)=0 $ is the equation of line. $ r=-( \frac{-a\lambda -b}{{{\lambda }^{2}}+1} ) $

Coordinates of point $ \equiv { -\lambda ( \frac{-a\lambda -b}{{{\lambda }^{2}}+1} ),-( \frac{-a\lambda -b}{{{\lambda }^{2}}+1} ) } $

$ h=\lambda ( \frac{a\lambda +b}{{{\lambda }^{2}}+1} ),k=\frac{a\lambda +b}{{{\lambda }^{2}}+1},\lambda =\frac{h}{k} $

$ \therefore h=h( \frac{ah+kb}{h^{2}+k^{2}} )\Rightarrow x^{2}+y^{2}=ax+by. $