Pair Of Straight Lines Question 50

Question: The equation of the locus of foot of perpendiculars drawn from the origin to the line passing through a fixed point (a, b), is

Options:

A) $ x^{2}+y^{2}-ax-by=0 $

B) $ x^{2}+y^{2}+ax+by=0 $

C) $ x^{2}+y^{2}-2ax-2by=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \lambda (x-a)+(y-b)=0 $ is the equation of line. $ r=-( \frac{-a\lambda -b}{{{\lambda }^{2}}+1} ) $

Coordinates of point $ \equiv { -\lambda ( \frac{-a\lambda -b}{{{\lambda }^{2}}+1} ),-( \frac{-a\lambda -b}{{{\lambda }^{2}}+1} ) } $

$ h=\lambda ( \frac{a\lambda +b}{{{\lambda }^{2}}+1} ),k=\frac{a\lambda +b}{{{\lambda }^{2}}+1},\lambda =\frac{h}{k} $

$ \therefore h=h( \frac{ah+kb}{h^{2}+k^{2}} )\Rightarrow x^{2}+y^{2}=ax+by. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें