Pair Of Straight Lines Question 58

Question: If the equation $ 2x^{2}+7xy+3y^{2}-9x-7y+k=0 $ represents a pair of lines, then k is equal to

[Kerala (Engg.) 2002]

Options:

A) 4

B) 2

C) 1

D) - 4

Show Answer

Answer:

Correct Answer: A

Solution:

For this to represent straight lines $ abc+2fgh-af^{2}-bg^{2}-ch^{2}=0 $ Here, a = 2, b = 3, c = k, f = -7/2, g = -9/2, h = 7/2.

Therefore $ 2.3.k+2(-7/2)(-9/2)(7/2)-2{{(-7/2)}^{2}} $

$ -3{{(-9/2)}^{2}}-k{{(7/2)}^{2}}=0 $

Therefore $ 6k+\frac{441}{4}-\frac{49}{2}-\frac{243}{4}-\frac{49k}{4}=0 $

Therefore $ 24k+441-98-243-49k=0 $

Therefore $ -25k+100=0 $

Therefore $ k=4 $ .