Pair Of Straight Lines Question 61

Question: The equation $ 2x^{2}+4xy-py^{2}+4x+qy+1=0 $ will represent two mutually perpendicular straight lines, if

Options:

A) p = 1 and q = 2 or 6

B) p = 2 and q = 0 or 6

C) p = 2 and q = 0 or 8

D) p = - 2 and q = - 2 or 8

Show Answer

Answer:

Correct Answer: C

Solution:

Here equation is $ 2x^{2}+4xy-py^{2}+4x+qy+1=0 $ . The lines are perpendicular, if $ a+b=0 $

$ \Rightarrow 2-p=0\Rightarrow p=2 $ and it will represent two lines, if $ abc+2fgh-af^{2}-bg^{2}-ch^{2}=0 $

$ \Rightarrow 2(-2)(1)+2( \frac{q}{2} )(2)(2)-2{{( \frac{q}{2} )}^{2}}+2{{(2)}^{2}}-1{{(2)}^{2}}=0 $

$ \Rightarrow q^{2}-8q=0\Rightarrow q=0 $ or 8.