Pair Of Straight Lines Question 62

Question: If $ \frac{x^{2}}{a}+\frac{y^{2}}{b}+\frac{2xy}{h}=0 $ represent pair of straight lines and slope of one line is twice the other. Then $ ab:h^{2} $ is

[DCE 2005]

Options:

A) 9 : 8

B) 8 : 9

C) 1 : 2

D) 2 : 1

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ m_1,m_2 $ be the slopes
$ \therefore $ $ m_1+m_2=-\frac{2b}{h} $ and $ m_1m_2=\frac{b}{a} $

Again $ m_2 $ = $ 2m_1 $

$ \therefore $ $ 3m_1=-\frac{2b}{h} $ and $ 2m_1^{2}=\frac{b}{a} $

$ \therefore $ $ \frac{9m_1^{2}}{2m_1^{2}}=\frac{4b^{2}}{h^{2}}\times \frac{a}{b}\Rightarrow ab:h^{2}=9:8 $ .