Pair Of Straight Lines Question 84

Question: The angle between the lines represented by the equation $ ax^{2}+2hxy+by^{2}=0 $ is given by

[RPET 1995]

Options:

A) $ \tan \theta =\frac{2(h^{2}-ab)}{(a+b)} $

B) $ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{(a+b)} $

C) $ \tan \theta =\frac{2(h^{2}-ab)}{\sqrt{a+b}} $

D) $ \tan \theta =\frac{2\sqrt{h^{2}+ab}}{(a+b)} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let m_1 and m_2 be the slopes of the lines by the equation

Given, $ax^2+2hxy+by^2=0$ ……. (i)

Let $y=m_1x$ and $y=m_2x$

$\therefore(y−m_1x)(y−m_2x)=0$

and $m_1m_2x^2−(m_1+m_2)xy+y^2=0$ ……… (ii)

Comparing (i) and (ii), we get

$\frac{m_1m_2}{a}=\frac{1}{b}=\frac{m_1+m_2}{2h}$

$∴m_1m_2=\frac{a}{b} and m_1+m_2=\frac{−2h}{b}$

Thus, $(m_1−m_2)^2=(m_1+m_2)^2−4m_1m_2$

$(m_1−m_2)^2=(\frac{−2h}{b})^2−4(\frac{a}{b})$

$(m_1−m_2)^2=4(h^2−ab)b^2$

Let the angle between $ y=m_1x$ and$ y=m_2x$ be θ.

$ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{(a+b)} $ if a+b≠0