Pair Of Straight Lines Question 84

Question: The angle between the lines represented by the equation $ ax^{2}+2hxy+by^{2}=0 $ is given by

[RPET 1995]

Options:

A) $ \tan \theta =\frac{2(h^{2}-ab)}{(a+b)} $

B) $ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{(a+b)} $

C) $ \tan \theta =\frac{2(h^{2}-ab)}{\sqrt{a+b}} $

D) $ \tan \theta =\frac{2\sqrt{h^{2}+ab}}{(a+b)} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let m_1 and m_2 be the slopes of the lines by the equation

Given, $ax^2+2hxy+by^2=0$ ……. (i)

Let $y=m_1x$ and $y=m_2x$

$\therefore(y−m_1x)(y−m_2x)=0$

and $m_1m_2x^2−(m_1+m_2)xy+y^2=0$ ……… (ii)

Comparing (i) and (ii), we get

$\frac{m_1m_2}{a}=\frac{1}{b}=\frac{m_1+m_2}{2h}$

$∴m_1m_2=\frac{a}{b} and m_1+m_2=\frac{−2h}{b}$

Thus, $(m_1−m_2)^2=(m_1+m_2)^2−4m_1m_2$

$(m_1−m_2)^2=(\frac{−2h}{b})^2−4(\frac{a}{b})$

$(m_1−m_2)^2=4(h^2−ab)b^2$

Let the angle between $ y=m_1x$ and$ y=m_2x$ be θ.

$ \tan \theta =\frac{2\sqrt{h^{2}-ab}}{(a+b)} $ if a+b≠0



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें