Pair Of Straight Lines Question 91

Question: The acute angle formed between the lines joining the origin to the points of intersection of the curves $ x^{2}+y^{2}-2x-1=0 $ and $ x+y=1 $ , is

[MP PET 1998]

Options:

A) $ {{\tan }^{-1}}( -\frac{1}{2} ) $

B) $ {{\tan }^{-1}}2 $

C) $ {{\tan }^{-1}}\frac{1}{2} $

D) $ 60^{o} $

Show Answer

Answer:

Correct Answer: B

Solution:

From $ x+y=1, $ to make the curve $ x^{2}+y^{2}-2x-1=0 $ homogenous.
$ \Rightarrow x^{2}+y^{2}-2x(x+y)-{{(x+y)}^{2}}=0 $

$ \therefore 2x^{2}+4xy=0 $ or $ x^{2}+2xy=0 $

$ \therefore \tan \theta =\frac{2\sqrt{h^{2}-ab}}{a+b} $ and $ a=1,\ b=0,\ h=1 $

$ \therefore \tan \theta =\frac{2\sqrt{1^{2}-0}}{1}\Rightarrow \theta ={{\tan }^{-1}}(2) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें