Permutations And Combinations Question 108

Question: If $ ^{n}C_3+{{}^{n}}C_4>{{}^{n+1}}C_3, $ then [RPET 1999]

Options:

A) $ n>6 $

B) $ n>7 $

C) $ n<6 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • $ {}^{n}C_3+{}^{n}C_4>{}^{n+1}C_3 $
    Þ $ {}^{n+1}C_4>{}^{n+1}C_3(\because {}^{n}C _{r}+{}^{n}{C _{r+1}}={}^{n+1}{C _{r+1}}) $
    Þ $ \frac{{}^{n+1}C_4}{{}^{n+1}C_3}>1 $ Þ $ \frac{n-2}{4}>1 $

$ \Rightarrow n>6 $ .