Permutations And Combinations Question 111

Question: $ ( \begin{matrix} n \\ n-r \\ \end{matrix} )+( \begin{matrix} n \\ r+1 \\ \end{matrix} ) $ , whenever $ 0\le r\le n-1 $ is equal to [AMU 2000]

Options:

A) $ ( \begin{matrix} n \\ r-1 \\ \end{matrix} ) $

B) $ ( \begin{matrix} n \\ r \\ \end{matrix} ) $

C) $ ( \begin{matrix} n \\ r+1 \\ \end{matrix} ) $

D) $ ( \begin{matrix} n+1 \\ r+1 \\ \end{matrix} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ ( \begin{aligned} & n \\ & n-r \\ \end{aligned} ) $ + $ ( \begin{aligned} & n \\ & r+1 \\ \end{aligned} ) $ = $ ^{n}{C _{n-r}}{{+}^{n}}{C _{r+1}} $

$ \Rightarrow {{}^{n}}C _{r}+{{}^{n}}{C _{r+1}} $ = $ ^{n+1}{C _{r+1}}=( \begin{matrix} n+1 \\ r+1 \\ \end{matrix} ) $ .