Question:  $ ^{n}C _{r}{{+}^{n-1}}C _{r}+……{{+}^{r}}C _{r} $  = [AMU 2002]
Options:
A)  $ ^{n+1}C _{r} $
B)  $ ^{n+1}{C _{r+1}} $
C)  $ ^{n+2}C _{r} $
D)  $ 2^{n} $
  Show Answer
  Answer:
Correct Answer: B
Solution:
- $ ^{r}C _{r}{{+}^{r+1}}C _{r}{{+}^{r+2}}C _{r}……{{+}^{n-1}}C _{r}{{+}^{n}}C _{r} $   $ {{=}^{r+1}}{C _{r+1}}{{+}^{r+1}}C _{r}{{+}^{r+2}}C _{r}+…..{{+}^{n-1}}C _{r}{{+}^{n}}C _{r} $   $ {{=}^{r+2}}{C _{r+1}}{{+}^{r+2}}C _{r}+…..{{+}^{n-1}}C _{r}{{+}^{n}}C _{r} $   $ {{=}^{r+3}}{C _{r+1}}+……{{+}^{n-1}}C _{r}{{+}^{n}}C _{r} $ . On solving similar way, we get  $ ^{n-1}{C _{r+1}}{{+}^{n}}C _{r}{{+}^{n}}C _{r}{{=}^{n}}{C _{r+1}}{{+}^{n}}C _{r}{{=}^{n+1}}{C _{r+1}} $ .