Question: $ ^{n}C _{r}{{+}^{n-1}}C _{r}+……{{+}^{r}}C _{r} $ = [AMU 2002]
Options:
A) $ ^{n+1}C _{r} $
B) $ ^{n+1}{C _{r+1}} $
C) $ ^{n+2}C _{r} $
D) $ 2^{n} $
Show Answer
Answer:
Correct Answer: B
Solution:
- $ ^{r}C _{r}{{+}^{r+1}}C _{r}{{+}^{r+2}}C _{r}……{{+}^{n-1}}C _{r}{{+}^{n}}C _{r} $ $ {{=}^{r+1}}{C _{r+1}}{{+}^{r+1}}C _{r}{{+}^{r+2}}C _{r}+…..{{+}^{n-1}}C _{r}{{+}^{n}}C _{r} $ $ {{=}^{r+2}}{C _{r+1}}{{+}^{r+2}}C _{r}+…..{{+}^{n-1}}C _{r}{{+}^{n}}C _{r} $ $ {{=}^{r+3}}{C _{r+1}}+……{{+}^{n-1}}C _{r}{{+}^{n}}C _{r} $ . On solving similar way, we get $ ^{n-1}{C _{r+1}}{{+}^{n}}C _{r}{{+}^{n}}C _{r}{{=}^{n}}{C _{r+1}}{{+}^{n}}C _{r}{{=}^{n+1}}{C _{r+1}} $ .