Permutations And Combinations Question 154

Question: A person is permitted to select at least one and at most n coins from a collection of $ (2n+1) $ distinct coins. If the total number of ways in which he can select coins is 255, then n equals [AMU 2002]

Options:

A) 4

B) 8

C) 16

D) 32

Show Answer

Answer:

Correct Answer: A

Solution:

  • Since the person is allowed to select at most n coins out of (2n + 1) coins, therefore in order to select one, two, three, ?., n coins. Thus, if T is the total number of ways of selecting one coin, then $ T={{}^{2n+1}}C_1{{+}^{2n+1}}C_2+……+{{}^{2n+1}}C _{n}=255 $ ?..(i) Again the sum of binomial coefficients = $ ^{2n+1}C_0{{+}^{2n+1}}C_1+{{}^{2n+1}}C_2+…..{{+}^{2n+1}}C _{n}{{+}^{2n+1}}{C _{n+1}} $ $ +{{}^{2n+1}}{C _{n+2}}+…..{{+}^{2n+1}}{C _{2n+1}}={{(1+1)}^{2n+1}}={2^{2n+1}} $
    Þ $ ^{2n+1}C_0+2( ^{2n+1}C_1+{{}^{2n+1}}C_2+…{{+}^{2n+1}}C _{n} ) $ $ +{{}^{2n+1}}{C _{2n+1}}={2^{2n+1}} $
    Þ $ 1+2(T)+1={2^{2n+1}}\Rightarrow 1+T=\frac{{2^{2n+1}}}{2}=2^{2n} $
    Þ $ 1+255=2^{2n}\Rightarrow 2^{2n}=2^{8}\Rightarrow n=4 $ .