Permutations And Combinations Question 159

Question: $ ^{n-1}C _{r}=(k^{2}-3).{{}^{n}}{C _{r+1}} $ if $ k\in $ [IIT Screening 2004]

Options:

A) $ [-\sqrt{3},\sqrt{3}] $

B) $ (-\infty ,-2) $

C) $ (2,\infty ) $

D) $ (\sqrt{3},2) $

Show Answer

Answer:

Correct Answer: D

Solution:

  • We have $ \frac{(n-1)!}{(n-r-1)!r!}=\frac{(k^{2}-3)n!}{(n-r-1)!(r+1)!} $ , $ 0\le r\le n-1 $

$ \Rightarrow $ $ k^{2}=\frac{r+1}{n}+3,\frac{1}{n}\le \frac{r+1}{n}\le 1 $ Þ $ k^{2}\in [ \frac{1}{n}+3,4 ],n\ge 2 $ $ k\in [ -2,-\sqrt{\frac{1}{n}+3} ]\cup [ \sqrt{\frac{1}{n}+3},2 ];n\ge 2 $ .