Permutations And Combinations Question 161

Question: Out of 5 apples, 10 mangoes and 15 oranges, any 15 fruits distributed among two persons. The total number of ways of distribution [DCE 2005]

Options:

A) 66

B) 36

C) 60

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • Number of ways = coefficient of $ x^{15} $ in the expansion $ (1+x+x^{2}+x^{3}+x^{4}+x^{5}) $ $ (1+x+x^{2}+…….+x^{10}) $ $ (1+x+x^{2}+……+x^{15}) $ $ (1+x+x^{2}+x^{3}+x^{4}+x^{5})(1+x+x^{2}+…..+x^{10}) $ $ (1+x+x^{2}+…+x^{15})=(1-x^{6}-x^{11})(1+{{}^{3}}C_1x+{{}^{4}}C_2x^{2} $ $ +……+{{}^{6}}C_4x^{4}+{{}^{11}}C_9x^{9}+{{}^{17}}C _{15}x^{15}+…………) $ $ =…….+…….+x^{15}({{-}^{11}}C_9-{{}^{6}}C_4+{{}^{17}}C _{15}) $ $ =…….+……+x^{15}(-55-15+136) $ $ =x^{15}\times 66 $ \ Coefficient of $ x^{15}=66 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें