Question: A set contains  $ (2n+1) $  elements. The number of sub-sets of the set which contain at most  $ n $  elements is
Options:
A)  $ 2^{n} $
B)  $ {2^{n+1}} $
C)  $ {2^{n-1}} $
D)  $ 2^{2n} $
  Show Answer
  Answer:
Correct Answer: D
Solution:
- The number of sub-sets of the set which contain at most n elements is  $ ^{2n+1}C_0{{+}^{2n+1}}C_1+…..+{{}^{2n+1}}C _{n}=S $  (Say) Then  $ 2S=2{{(}^{2n+1}}C_0+{{}^{2n+1}}C_1+…..+{{}^{2n+1}}C _{n}) $              =  $ {{(}^{2n+1}}C_0+{{}^{2n+1}}{C _{2n+1}})+{{(}^{2n+1}}C_1+{{}^{2n+1}}C _{2n})+……..+{{(}^{2n+1}}C _{n}+{{}^{2n+1}}{C _{n+1}}) $  $ { \because {{}^{n}}C _{r}={{}^{n}}{C _{n-r}} } $  =  $ ^{2n+1}C_0+{{}^{2n+1}}C_1+…….+{{}^{2n+1}}{C _{2n+1}}={2^{2n+1}} $
$ \Rightarrow  $     $ S=2^{2n} $ .