Question: Number of ways of selection of 8 letters from 24 letters of which 8 are  $ a $ , 8 are  $ b $  and the rest unlike, is given by
Options:
A)  $ 2^{7} $
B)  $ 8\ .\ 2^{8} $
C)  $ 10\ .\ 2^{7} $
D) None of these
  Show Answer
  Answer:
Correct Answer: C
Solution:
- The number of selections = coefficient of  $ x^{8} $ in  $ (1+x+x^{2}+………+x^{8})(1+x+x^{2}+……+x^{8}).{{(1+x)}^{8}} $ = coefficient of  $ x^{8} $  in  $ {{\frac{(1-x^{9})}{{{(1-x)}^{2}}}}^{2}}{{(1+x)}^{8}} $  = coefficient of  $ x^{8} $  in  $ {{(1+x)}^{8}}{{(1-x)}^{-2}} $  = coefficient of  $ x^{8} $  in  $ {{(}^{8}}C_0{{+}^{8}}C_1x{{+}^{8}}C_2x^{2}+…….+{{}^{8}}C_8x^{8}) $                        $ \times (1+2x+3x^{2}+4x^{3}+……+9x^{8}+…..) $   $ =9\ .{{\ }^{8}}C_0+8\ .{{\ }^{8}}C_1+7\ .{{\ }^{8}}C_2+………+1\ .{{\ }^{8}}C_8 $   $ =C_0+2C_1+3C_2+…..+9C_8 $         $ [C _{r}{{=}^{8}}C _{r}] $  Now  $ C_0x+C_1x^{2}+…….+C_8x^{9}=x{{(1+x)}^{8}} $  Differentiating with respect to  $ x $ , we get  $ C_0+2C_1x+3C_2x^{2}+…9C_8x^{8}={{(1+x)}^{8}}+8x{{(1+x)}^{7}} $  Putting  $ x=1,\  $ we get  $ C_0+2C_1+3C_2+……+9C_8 $   $ =2^{8}+8\ .\ 2^{7}=2^{7}.(2+8)=10\ .\ 2^{7} $ .