Permutations And Combinations Question 193

Question: Number of ways of selection of 8 letters from 24 letters of which 8 are $ a $ , 8 are $ b $ and the rest unlike, is given by

Options:

A) $ 2^{7} $

B) $ 8\ .\ 2^{8} $

C) $ 10\ .\ 2^{7} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • The number of selections = coefficient of $ x^{8} $ in $ (1+x+x^{2}+………+x^{8})(1+x+x^{2}+……+x^{8}).{{(1+x)}^{8}} $ = coefficient of $ x^{8} $ in $ {{\frac{(1-x^{9})}{{{(1-x)}^{2}}}}^{2}}{{(1+x)}^{8}} $ = coefficient of $ x^{8} $ in $ {{(1+x)}^{8}}{{(1-x)}^{-2}} $ = coefficient of $ x^{8} $ in $ {{(}^{8}}C_0{{+}^{8}}C_1x{{+}^{8}}C_2x^{2}+…….+{{}^{8}}C_8x^{8}) $ $ \times (1+2x+3x^{2}+4x^{3}+……+9x^{8}+…..) $ $ =9\ .{{\ }^{8}}C_0+8\ .{{\ }^{8}}C_1+7\ .{{\ }^{8}}C_2+………+1\ .{{\ }^{8}}C_8 $ $ =C_0+2C_1+3C_2+…..+9C_8 $ $ [C _{r}{{=}^{8}}C _{r}] $ Now $ C_0x+C_1x^{2}+…….+C_8x^{9}=x{{(1+x)}^{8}} $ Differentiating with respect to $ x $ , we get $ C_0+2C_1x+3C_2x^{2}+…9C_8x^{8}={{(1+x)}^{8}}+8x{{(1+x)}^{7}} $ Putting $ x=1,\ $ we get $ C_0+2C_1+3C_2+……+9C_8 $ $ =2^{8}+8\ .\ 2^{7}=2^{7}.(2+8)=10\ .\ 2^{7} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें